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Introduction: zero-one laws

Definition
A class C of structures in some first-order language admits a
zero-one law if, for any sentence φ, the probability that a
randomly selected C-structure of size n satisfies φ converges
asymptotically to zero or one as n→∞.

Classical example: finite graphs [Glebskii et. al]
Convergence to zero or one is a rather strict requirement
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Introduction: logical limit laws

Definition
A class C of structures in some first-order language admits a
logical limit law if, for any sentence φ, the probability that a
randomly selected C-structure of size n satisfies φ converges
asymptotically (not necessarily to zero or one) as n→∞.

“Unlabeled limit law” — class of unlabeled structures
admits a limit law
“Labeled limit law” — class of labeled structures admits a
limit law
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Introduction: main results

Theorem
Convex linear orders and layered permutations admit both
unlabeled and labeled limit laws. Compositions admit an
unlabeled limit law.
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Convex linear orders

Definition
Let L be the language containing two binary relations: < and
E. A convex linear order is an L-structure satisfying:

< is a total order on points
E is an equivalence relation
x E z, x < y < z ⇒ z E x , y
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Sum operators

Definition

Let C be a convex linear order. Define Ĉ to be the convex linear
order obtained by adding one additional point to the last class
of C.

Definition
For convex linear orders C,D, define C ⊕D as the convex linear
order placing D <-after C.
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Constructing convex linear orders

Lemma
Every finite convex linear order containing n points can be
uniquely constructed by applying (̂−) and/or − ⊕ • to •
repeatedly.

Proof
Proceed by induction.

Base case: n = 1 trivial
When n = 2, two possible cases: C ≃ • ⊕ • or C ≃ •̂
In general: last class of C contains one or more points.
Apply − ⊕ • or (̂−) appropriately. □
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Ehrenfeucht–Fraı̈ssé games

Ehrenfeucht–Fraı̈ssé game on two structures:
back-and-forth game between players Spoiler and
Duplicator in which corresponding points are marked on
each structure
In game of length k between A and B, Duplicator has a
winning strategy iff A and B agree on all sentences of
quantifier depth at most k .
Write A ≡k B in this case
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Equivalences

Lemma
LetM,N,M′,N′ be convex linear orders such thatM ≡k N and
M′ ≡k N

′. The following equivalences hold:
M ⊕M′ ≡k N ⊕N

′

M̂ ≡k N̂
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Equivalences

Lemma
For a convex linear orderM and k ∈N, there exists ℓ ∈N such
that for all s, t > ℓ, ⊕

s

M ≡k

⊕
t

M
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The limit law

Labeled limit laws: count all possible structures over
[n] := {1, . . . ,n} as n→∞
Unlabeled: count all structures up to isomorphism

Finite linearly ordered structures have no nontrivial
automorphisms, hence, no distinction in this case
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The limit law

General idea:
For first-order sentence φ (with quantifier rank k ),
associate a Markov chain Mφ
States of Mφ are ≡k -classes
Probability that randomly selected structure of size n
satisfies φ is probability that Mφ is in a state that satisfies φ
after n transitions
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The limit law

For an ≡k -class C, define

C ⊕ • := [M ⊕ •]
≡k

and
Ĉ := [M̂]≡k
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The limit law

For φ an L-sentence (with quantifier depth k ), construct a
Markov chain Mφ as follows:

Starting state: [•]≡k

From any ≡k -class C, there are two possible transitions
out: to C ⊕ • or Ĉ
Each transition probability is 1/2
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The limit law

Definition
A Markov chain M is fully aperiodic if there do not exist disjoint
sets of M-states P0,P1, . . . ,Pd−1 for some d > 1 such that for
every state in Pi , M transitions to a state in Pi+1 with probability
1 (with Pd−1 transitioning to P0).

Lemma
Let M be a finite, fully aperiodic Markov chain with initial state
S, and let Prn−1(S ,Q) denote the probability that M is in state
Q after n − 1 steps. For any Q , limn→∞ Prn−1(S ,Q) converges.
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The limit law

Theorem
Mφ is fully aperiodic for any first-order sentence φ.

Proof
Suppose Mφ were not fully aperiodic.

There would exist disjoint sets of Mφ-states (≡k -classes)
P0,P1, . . . ,Pd−1 for d > 1 where every state in Pi , Mφ
transitions to a state in Pi+1 with probability 1 (Pd−1
transitioning to P0).
Thus, for any Q ∈ P0, Q ⊕ i• is in P0 iff d | i.
By equivalence lemmas, this is not possible □
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The limit law

Theorem
Convex linear orders admit a logical limit law.

Proof
Fix a first-order sentence φ, and consider Mφ.

For each state S in Mφ, either each structure in S satisfies
φ or no structures in S satisfy φ.
Let Sφ denote the set of states in Mφ for which all
structures in that state satisfy φ.

(̂−) and − ⊕ • are well-defined on ≡k -classes, hence,
moving n − 1 steps in Mφ is equivalent to starting with any
structure in the current state, applying (̂−) or − ⊕ • n − 1
times, and taking the ≡k -class.
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The limit law

Proof (continued)
The probability that after n steps, Mφ is in a state of Sφ
equals probability that uniformly randomly selected
structure of size n satisfies φ
Suffices to show that limn→∞

∑
Q∈Sφ Prn−1(•,Q) converges,

which follows from Markov chain lemma □
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Transfer lemmas

Fix languages L0,L1 and classes C0,C1 of L0,L1 structures
respectively.

Lemma
Let f be a map from the set of L0-structures to the set of
L1-structures, and g a map from the set of L0-sentences to the
set of L1-sentences such that, for any C0-structureM and
L0-sentence φ:

1 M |= φ ⇐⇒ f(M) |= g(φ)
2 f is a bijection between C0 and C1 structures of size n
3 The class C1 admits a logical limit law

Then, C0 admits a logical limit law as well.
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Uniform interdefinability

Definition
Classes C0 and C1 of structures (over a common domain of [n])
are said to be uniformly interdefinable if there exists a map
fI : C0 → C1 (bijective on structures), along with formulae
φR0,i , φR1,i for each relation R0,i in L0 and R1,i in L1 such that,
for eachM0 in C0 andM1 in C1:

M0 |= R0,i(x̄) ⇐⇒ fI(M0) |= φR0,i (x̄)

M1 |= R1,i(x̄) ⇐⇒ f−1
I (M1) |= φR1,i (x̄)
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Uniform interdefinability

Theorem
Let C0, C1 be uniformly interdefinable classes of L0, L1
structures. If C1 admits a logical limit law, C0 admits one as
well.

Proof
Take the transfer maps f , g to be:

f = fI
g is the map sends an L0-sentence to the L1-sentence
with each ocurrence of R0,i replaced with φR0,i

□
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Layered permutations

Permutations can be viewed as structures in the language
L = {<1, <2} with two linear orders. The order <1 gives the
unpermuted order of the points (before applying the
permutation) and <2 describes the points in permuted
order.
Blocks are maximal subsets which are monotone
<1/<2-intervals
A layered permutation is composed of increasing blocks,
each of which contains a decreasing permutation

M. Kukla



Layered permutations

•

•

•

•

•

•

<1

<2
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Layered permutations

Lemma
Layered permutations and convex linear orders are uniformly
interdefinable.

Proof
Define fI to be the map taking blocks of a layered permutation
to classes of a convex linear order, and points in an
order-preserving manner. The relations <1 and <2 are rewritten
as:

φ<1 : a <1 b ⇝ a < b
φ<2 : a <2 b ⇝ (a E b ∧ b < a) ∨ (¬(a E b) ∧ a < b)

□
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Layered permutations

•
•

•

• • •

M0

fI(M0)

fI
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Layered permutations

Theorem
Layered permutations admit a logical limit law.

Proof
Layered permutations are uniformly interdefinable with convex
linear orders. Because convex linear orders admit a logical limit
law, layered permutations admit one as well. □
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Fractured orders

Let L0 = {E, <} be the language of convex linear orders
Define L1 = {E,≺1,≺2}

Fractured orders take a convex linear order < and break it
into two parts: ≺1 between E-classes, and ≺2 within
E-classes.
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Fractured orders

Definition
A fractured order is an L1-structure satisfying:

1 ≺1, ≺2 are partial orders
2 E is an equivalence relation
3 Distinct points a, b are ≺1-comparable iff they are not

E-related
4 Distinct points a, b are ≺2-comparable iff they are

E-related
5 a E a′, a ≺1 b ⇒ a′ ≺1 b (convexity)

We denote the class of all finite fractured orders by F .
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Fractured orders

Theorem
Fractured orders and convex linear orders are uniformly
interdefinable.

Proof
Define fI : F → C0 such that:

M1 |= a E b ⇐⇒ fI(M1) |= a E b
M1 |= a ≺1 b ⇐⇒ fI(M1) |= ¬a E b ∧ a < b
M1 |= a ≺2 b ⇐⇒ fI(M1) |= a E b ∧ a < b

This map satisfies the requirements for uniform
interdefinability. □
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Reducts and limit laws

Lemma
Let L be a language and L′ ⊂ L. Given a class C of
L-structures which admits a logical limit law, any class C′ of
L
′-structures which expand uniquely to C-structures also

admits a logical limit law.

Proof
Construct the transfer maps f and g from earlier:

f is taken to be the map sending a structure in C′ to its
unique expansion in C
This expansion is unique, hence f is bijective on structures
of size n for all n
g is given by the identity map on formulas

□
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Compositions

Compositions are structures in the reduct L2 ⊂ L1 given
by L2 = {E,≺1}

Order defined on equivalence classes, but not on points
within each class
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Compositions

Lemma
Every composition expands uniquely to a fractured order, up to
isomorphism.

Proof
There is a unique way to linearly order each E-class
individually. Because ordering these classes determines ≺2,
there is a unique way to define ≺2 on any composition,
expanding it to a fractured order. □
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Compositions

Theorem
The class of compositions admit an unlabeled logical limit law.

Proof
The language of compositions is a reduct of the language of
fractured orders, and every composition expands uniquely to a
fractured order. The class of fractured orders admits a logical
limit law, therefore, by the previous lemma, compositions admit
a limit law as well. □
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