Logical Limit Laws for Layered Permutations and Related Structures

Matthew Kukla (Joint with Samuel Braunfeld)

University of Maryland, College Park

February 2022

- 2 Convex linear orders
- 3 Uniform interdefinability
- 4 Layered permutations
- 5 Compositions

≣ ▶

- 2 Convex linear orders
- Oniform interdefinability
- 4 Layered permutations
- 5 Compositions

・ 同 ト ・ 三 ト ・

A class *C* of structures in some first-order language admits a zero-one law if, for any sentence φ , the probability that a randomly selected *C*-structure of size *n* satisfies φ converges asymptotically to zero or one as $n \to \infty$.

イロト イ理ト イヨト イヨト

A class *C* of structures in some first-order language admits a zero-one law if, for any sentence φ , the probability that a randomly selected *C*-structure of size *n* satisfies φ converges asymptotically to zero or one as $n \to \infty$.

• Classical example: finite graphs [Glebskii et. al]

A class *C* of structures in some first-order language admits a zero-one law if, for any sentence φ , the probability that a randomly selected *C*-structure of size *n* satisfies φ converges asymptotically to zero or one as $n \to \infty$.

- Classical example: finite graphs [Glebskii et. al]
- Convergence to zero or one is a rather strict requirement

ヘロト ヘアト ヘビト ヘ

A class *C* of structures in some first-order language admits a logical limit law if, for any sentence φ , the probability that a randomly selected *C*-structure of size *n* satisfies φ converges asymptotically (not necessarily to zero or one) as $n \to \infty$.

ヘロト ヘアト ヘヨト ヘ

A class *C* of structures in some first-order language admits a logical limit law if, for any sentence φ , the probability that a randomly selected *C*-structure of size *n* satisfies φ converges asymptotically (not necessarily to zero or one) as $n \to \infty$.

- "Unlabeled limit law" class of *unlabeled* structures admits a limit law
- "Labeled limit law" class of labeled structures admits a limit law

ヘロト ヘアト ヘビト ヘ

Theorem

Convex linear orders and layered permutations admit both unlabeled and labeled limit laws. Compositions admit an unlabeled limit law.

ъ

イロト イポト イヨト イ

- Uniform interdefinability
- 4 Layered permutations
- 5 Compositions

▲□ ▶ ▲ 三 ▶ ▲

Let \mathcal{L} be the language containing two binary relations: < and *E*. A convex linear order is an \mathcal{L} -structure satisfying:

- < is a total order on points</p>
- E is an equivalence relation
- $x \in z, x < y < z \Rightarrow z \in x, y$

Let \mathfrak{C} be a convex linear order. Define $\widehat{\mathfrak{C}}$ to be the convex linear order obtained by adding one additional point to the last class of $\mathfrak{C}.$

Let \mathfrak{C} be a convex linear order. Define \mathfrak{C} to be the convex linear order obtained by adding one additional point to the last class of \mathfrak{C} .

Definition

For convex linear orders $\mathfrak{C}, \mathfrak{D}$, define $\mathfrak{C} \oplus \mathfrak{D}$ as the convex linear order placing $\mathfrak{D} <$ -after \mathfrak{C} .

Every finite convex linear order containing *n* points can be uniquely constructed by applying (-) and/or $- \oplus \bullet$ to \bullet repeatedly.

イロン イボン イヨン イヨン

ъ

Every finite convex linear order containing *n* points can be uniquely constructed by applying $\widehat{(-)}$ and/or $- \oplus \bullet$ to \bullet repeatedly.

Proof

Proceed by induction.

- Base case: *n* = 1 trivial
- When n = 2, two possible cases: $\mathfrak{C} \simeq \bullet \oplus \bullet$ or $\mathfrak{C} \simeq \widehat{\bullet}$
- In general: last class of ℭ contains one or more points.
 Apply ⊕ or (-) appropriately.

ヘロト ヘアト ヘヨト

- Ehrenfeucht–Fraïssé game on two structures: back-and-forth game between players Spoiler and Duplicator in which corresponding points are marked on each structure
- In game of length k between A and B, Duplicator has a winning strategy iff A and B agree on all sentences of quantifier depth at most k.
- Write $\mathfrak{A} \equiv_k \mathfrak{B}$ in this case

Let $\mathfrak{M}, \mathfrak{N}, \mathfrak{M}', \mathfrak{N}'$ be convex linear orders such that $\mathfrak{M} \equiv_k \mathfrak{N}$ and $\mathfrak{M}' \equiv_k \mathfrak{N}'$. The following equivalences hold:

•
$$\mathfrak{M} \oplus \mathfrak{M}' \equiv_k \mathfrak{N} \oplus \mathfrak{N}'$$

•
$$\widehat{\mathfrak{M}} \equiv_k \widehat{\mathfrak{N}}$$

イロト イポト イヨト イヨト

= 990

For a convex linear order \mathfrak{M} and $k \in \mathbb{N}$, there exists $\ell \in \mathbb{N}$ such that for all $s, t > \ell$,

$$\bigoplus_{s} \mathfrak{M} \equiv_{k} \bigoplus_{t} \mathfrak{M}$$

3

イロト イ押ト イヨト イヨト

- Labeled limit laws: count all possible structures over
 [n] := {1,...,n} as n → ∞
- Unlabeled: count all structures up to isomorphism

イロト イポト イヨト イヨト

- Labeled limit laws: count all possible structures over
 [n] := {1,...,n} as n → ∞
- Unlabeled: count all structures up to isomorphism
- Finite linearly ordered structures have no nontrivial automorphisms, hence, no distinction in this case

General idea:

- For first-order sentence φ (with quantifier rank k), associate a Markov chain M_φ
- States of M_{φ} are \equiv_k -classes
- Probability that randomly selected structure of size n satisfies φ is probability that M_φ is in a state that satisfies φ after n transitions

For an \equiv_k -class *C*, define

$$C \oplus \bullet := [\mathfrak{M} \oplus \bullet]_{\equiv_k}$$

and

$$\widehat{C} := [\widehat{\mathfrak{M}}]_{\equiv_k}$$

・ロト ・回ト ・ヨト ・ヨト

For φ an \mathcal{L} -sentence (with quantifier depth k), construct a Markov chain M_{φ} as follows:

- Starting state: [●]_{≡_k}
- From any ≡_k-class C, there are two possible transitions out: to C ⊕ or C
- Each transition probability is 1/2

A Markov chain *M* is *fully aperiodic* if there do not exist disjoint sets of *M*-states $P_0, P_1, \ldots, P_{d-1}$ for some d > 1 such that for every state in P_i , *M* transitions to a state in P_{i+1} with probability 1 (with P_{d-1} transitioning to P_0).

Lemma

Let *M* be a finite, fully aperiodic Markov chain with initial state *S*, and let $Pr^{n-1}(S, Q)$ denote the probability that *M* is in state *Q* after n - 1 steps. For any *Q*, $\lim_{n\to\infty} Pr^{n-1}(S, Q)$ converges.

・ロト ・回ト ・ヨト ・

Theorem

 M_{φ} is fully aperiodic for any first-order sentence φ .

Proof

Suppose M_{φ} were not fully aperiodic.

 There would exist disjoint sets of M_φ-states (≡_k-classes) P₀, P₁,..., P_{d-1} for d > 1 where every state in P_i, M_φ transitions to a state in P_{i+1} with probability 1 (P_{d-1} transitioning to P₀).

イロト イポト イヨト イヨト

- Thus, for any $Q \in P_0$, $Q \oplus i \bullet$ is in P_0 iff $d \mid i$.
- By equivalence lemmas, this is not possible

Theorem

Convex linear orders admit a logical limit law.

Proof

Fix a first-order sentence φ , and consider M_{φ} .

- For each state *S* in M_{φ} , either each structure in *S* satisfies φ or no structures in *S* satisfy φ .
- Let S_φ denote the set of states in M_φ for which all structures in that state satisfy φ.
- (-) and ⊕ are well-defined on ≡_k-classes, hence, moving n 1 steps in M_φ is equivalent to starting with any structure in the current state, applying (-) or ⊕ n 1 times, and taking the ≡_k-class.

・ロト ・回ト ・ヨト ・

Proof (continued)

- The probability that after *n* steps, M_{φ} is in a state of S_{φ} equals probability that uniformly randomly selected structure of size *n* satisfies φ
- Suffices to show that lim_{n→∞} ∑_{Q∈S_φ} Prⁿ⁻¹(•, Q) converges, which follows from Markov chain lemma

・ 同 ト ・ 三 ト ・

.≣⇒

Fix languages \mathcal{L}_0 , \mathcal{L}_1 and classes C_0 , C_1 of \mathcal{L}_0 , \mathcal{L}_1 structures respectively.

Lemma

Let *f* be a map from the set of \mathcal{L}_0 -structures to the set of \mathcal{L}_1 -structures, and *g* a map from the set of \mathcal{L}_0 -sentences to the set of \mathcal{L}_1 -sentences such that, for any C_0 -structure \mathfrak{M} and \mathcal{L}_0 -sentence φ :

- 2) *f* is a bijection between C_0 and C_1 structures of size *n*
- **③** The class C_1 admits a logical limit law

Then, C_0 admits a logical limit law as well.

ヘロト ヘアト ヘヨト

Classes C_0 and C_1 of structures (over a common domain of [n]) are said to be *uniformly interdefinable* if there exists a map $f_l : C_0 \to C_1$ (bijective on structures), along with formulae $\varphi_{R_{0,i}}, \varphi_{R_{1,i}}$ for each relation $R_{0,i}$ in \mathcal{L}_0 and $R_{1,i}$ in \mathcal{L}_1 such that, for each \mathfrak{M}_0 in C_0 and \mathfrak{M}_1 in C_1 :

•
$$\mathfrak{M}_0 \models R_{0,i}(\bar{x}) \iff f_i(\mathfrak{M}_0) \models \varphi_{R_{0,i}}(\bar{x})$$

•
$$\mathfrak{M}_1 \models R_{1,i}(\bar{x}) \iff f_j^{-1}(\mathfrak{M}_1) \models \varphi_{R_{1,i}}(\bar{x})$$

Theorem

Let C_0 , C_1 be uniformly interdefinable classes of \mathcal{L}_0 , \mathcal{L}_1 structures. If C_1 admits a logical limit law, C_0 admits one as well.

Proof

Take the transfer maps *f*, *g* to be:

- $f = f_l$
- g is the map sends an L₀-sentence to the L₁-sentence with each ocurrence of R_{0,i} replaced with φ<sub>R_{0,i}
 </sub>

- 2 Convex linear orders
- 3 Uniform interdefinability
- 4 Layered permutations
- 5 Compositions

▲□ ▶ ▲ 三 ▶ ▲

Layered permutations

- Permutations can be viewed as structures in the language $\mathcal{L} = \{<_1, <_2\}$ with two linear orders. The order $<_1$ gives the unpermuted order of the points (before applying the permutation) and $<_2$ describes the points in permuted order.
- Blocks are maximal subsets which are monotone <1/<2-intervals
- A *layered permutation* is composed of increasing blocks, each of which contains a decreasing permutation

くロト (過) (目) (日)

Layered permutations

Layered permutations and convex linear orders are uniformly interdefinable.

Proof

Define f_l to be the map taking blocks of a layered permutation to classes of a convex linear order, and points in an order-preserving manner. The relations $<_1$ and $<_2$ are rewritten as:

- φ_{<1} : a <1 b → a < b</p>
- φ_{<2}: a <2 b → (a E b ∧ b < a) ∨ (¬(a E b) ∧ a < b)

Layered permutations

<ロト <回 > < 注 > < 注 > 、

Theorem

Layered permutations admit a logical limit law.

Proof

Layered permutations are uniformly interdefinable with convex linear orders. Because convex linear orders admit a logical limit law, layered permutations admit one as well.

イロト イポト イヨト イヨト

- 2 Convex linear orders
- 3 Uniform interdefinability
- 4 Layered permutations
- 5 Compositions

_ৰ ≣ ► ৰ

< 🗇 🕨

- Let $\mathcal{L}_0 = \{E, <\}$ be the language of convex linear orders
- Define $\mathcal{L}_1 = \{E, \prec_1, \prec_2\}$
- Fractured orders take a convex linear order < and break it into two parts: <1 between E-classes, and <2 within E-classes.

A *fractured order* is an \mathcal{L}_1 -structure satisfying:

- \bigcirc <1, <2 are partial orders
- E is an equivalence relation
- Obstinct points a, b are <1-comparable iff they are not E-related
- Oistinct points a, b are <2-comparable iff they are E-related
- $a E a', a \prec_1 b \Rightarrow a' \prec_1 b$ (convexity)

We denote the class of all finite fractured orders by \mathcal{F} .

Theorem

Fractured orders and convex linear orders are uniformly interdefinable.

Proof

Define $f_l : \mathcal{F} \to C_0$ such that:

•
$$\mathfrak{M}_1 \models a E b \iff f_l(\mathfrak{M}_1) \models a E b$$

•
$$\mathfrak{M}_1 \models a \prec_1 b \iff f_l(\mathfrak{M}_1) \models \neg a E b \land a < b$$

•
$$\mathfrak{M}_1 \models a \prec_2 b \iff f_l(\mathfrak{M}_1) \models a E b \land a < b$$

This map satisfies the requirements for uniform interdefinability.

3

イロト イポト イヨト イヨト

Reducts and limit laws

Lemma

Let \mathcal{L} be a language and $\mathcal{L}' \subset \mathcal{L}$. Given a class C of \mathcal{L} -structures which admits a logical limit law, any class C' of \mathcal{L}' -structures which expand uniquely to C-structures also admits a logical limit law.

Let \mathcal{L} be a language and $\mathcal{L}' \subset \mathcal{L}$. Given a class C of \mathcal{L} -structures which admits a logical limit law, any class C' of \mathcal{L}' -structures which expand uniquely to C-structures also admits a logical limit law.

Proof

Construct the transfer maps f and g from earlier:

- *f* is taken to be the map sending a structure in *C*' to its unique expansion in *C*
- This expansion is unique, hence *f* is bijective on structures of size *n* for all *n*

ヘロト ヘアト ヘヨト

• g is given by the identity map on formulas

- Compositions are structures in the reduct L₂ ⊂ L₁ given by L₂ = {E, ≺₁}
- Order defined on equivalence classes, but not on points within each class

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

æ

Every composition expands uniquely to a fractured order, up to isomorphism.

Proof

There is a unique way to linearly order each *E*-class individually. Because ordering these classes determines $<_2$, there is a unique way to define $<_2$ on any composition, expanding it to a fractured order.

(日) (四) (日) (日) (日)

Theorem

The class of compositions admit an unlabeled logical limit law.

Proof

The language of compositions is a reduct of the language of fractured orders, and every composition expands uniquely to a fractured order. The class of fractured orders admits a logical limit law, therefore, by the previous lemma, compositions admit a limit law as well.

S. Braunfeld, M. Kukla.

Logical Limit Laws for Layered Permutations and Related Structures.

Enumerative Combinatorics and Applications 2:4 (2021).

- Yu. V. Glebskii, D.I. Kogan, M.I. Liogon'kil, V.A. Talanov. Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics, 5(2):142–154 (1969).
- John Foy, Alan R. Woods. Probabilities of sentences about two linear orderings. Feasible Mathematics: 181-193 (1990).